A novel image segmentation algorithm based on neutrosophic similarity clustering

نویسندگان

  • Yanhui Guo
  • Abdulkadir Sengür
چکیده

Segmentation is an important research area in image processing, which has been used to extract objects in images. A variety of algorithms have been proposed in this area. However, these methods perform well on the images without noise, and their results on the noisy images are not good. Neutrosophic set (NS) is a general formal framework to study the neutralities’ origin, nature, and scope. It has an inherent ability to handle the indeterminant information. Noise is one kind of indeterminant information on images. Therefore, NS has been successfully applied into image processing algorithms. This paper proposed a novel algorithm based on neutrosophic similarity clustering (NSC) to segment gray level images. We utilize the neutrosophic set in image processing field and define a new similarity function for clustering. At first, an image is represented in the neutrosophic set domain via three membership sets: T, I and F. Then, a neutrosophic similarity function (NSF) is defined and employed in the objective function of the clustering analysis. Finally, the new defined clustering algorithm classifies the pixels on the image into different groups. Experiments have been conducted on a variety of artificial and real images. Several measurements are used to evaluate the proposed method’s performance. The experimental results demonstrate that the NSC method segment the images effectively and accurately. It can process both images without noise and noisy images having different levels of noises well. It will be helpful to applications in image processing and computer vision. © 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

An Efficient Image Segmentation Algorithm Using Neutrosophic Graph Cut

Segmentation is considered as an important step in image processing and computer vision applications, which divides an input image into various non-overlapping homogenous regions and helps to interpret the image more conveniently. This paper presents an efficient image segmentation algorithm using neutrosophic graph cut (NGC). An image is presented in neutrosophic set, and an indeterminacy filt...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014